9.2: Overview of Phosphate Groups (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    106344
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Phosphate is everywhere in biochemistry. As we were reminded in the introduction to this chapter, our DNA is linked by phosphate:

    9.2: Overview of Phosphate Groups (2)

    The function of many proteins is regulated - switched on and off - by enzymes which attach or remove a phosphate group from the side chains of serine, threonine, or tyrosine residues.

    9.2: Overview of Phosphate Groups (3)

    Countless diseases are caused by defects in phosphate transferring enzymes. As just one example, achondroplasia, a common cause of dwarfism, is caused by a defect in an enzyme whose function is to transfer a phosphate to a tyrosine residue in a growth-related signaling protein.

    Finally, phosphates are excellent leaving groups in biological organic reactions, as we will see many times throughout the remainder of this book.

    Clearly, an understanding of phosphate chemistry is central to the study of biological organic chemistry. We'll begin with an overview of terms used when talking about phosphates.

    Terms and abbreviations

    The fully deprotonated conjugate base of phosphoric acid is called a phosphate ion, or inorganic phosphate (often abbreviated '\(P_i\)'). When two phosphate groups are linked to each other, the linkage itself is referred to as a 'phosphate anhydride', and the compound is called 'inorganic pyrophosphate' (often abbreviated \(PP_i\)).

    9.2: Overview of Phosphate Groups (4)

    The chemical linkage between phosphate and a carbon atom is a phosphate ester. Adenosine monophosphate (AMP) has a single phosphate ester linkage.

    9.2: Overview of Phosphate Groups (5)

    Adenosine triphosphate has one phosphate ester linkage and two phosphate anhydride linkages.

    9.2: Overview of Phosphate Groups (6)

    Oxygen atoms in phosphate groups are referred to either as 'bridging' or 'non-bridging', depending on their position. An organic diphosphate has two bridging oxygens (one in the phosphate ester linkage and one in the phosphate anhydride linkage) and five non-bridging oxygens:

    9.2: Overview of Phosphate Groups (7)

    A single phosphate is linked to two organic groups is called phosphate diester. The backbone of DNA is linked by phosphate diesters.

    9.2: Overview of Phosphate Groups (8)

    Organic phosphates are often abbreviated using '\(OP\)' and '\(OPP\)' for mono- and diphosphates, respectively. For example, glucose-6-phosphate and isopentenyl diphosphate are often depicted as shown below. Notice that the 'P' abbreviation includes the associated oxygen atoms and negative charges.

    9.2: Overview of Phosphate Groups (9)

    Exercise 9.2.1

    Consider the biological compounds below, some of which are shown with abbreviated structures:

    9.2: Overview of Phosphate Groups (10)

    1. For each compound, specify the number of bridging and non-bridging oxygens in the phosphate group.

    Acid constants and protonation states

    Phosphoric acid is triprotic, meaning that it has three acidic protons available to donate, with \(pK_a\) values of 1.0, 6.5, and 13.0, respectively. (da Silva and Williams)

    9.2: Overview of Phosphate Groups (11)

    These acid constant values, along with the Henderson-Hasselbalch equation (section 7.2) tell us that, at the physiological \(pH\) of approximately 7, somewhat more than half of the phosphate species will be in the \(HPO_4^{-2}\) state, and slightly less than half will be in the \(H_2PO_4^{-1}\) state, meaning that the average net charge is between -1.5 and -2.0.

    Phosphate diesters have a \(pK_a\) of about 1, meaning that they carry a full negative charge at physiological \(pH\).

    9.2: Overview of Phosphate Groups (12)

    Organic monophosphates, diphosphates, and triphosphates all have net negative charges and are partially protonated at physiological \(pH\), but by convention are usually drawn in the fully deprotonated state.

    Exercise 9.2.2

    Explain why the second \(pK_a\) of phosphoric acid is so much higher than the first \(pK_a\).

    Exercise 9.2.3

    What is the approximate net charge of inorganic phosphate in a solution buffered to \(pH 1\)?

    Recall from section 8.4 that good leaving groups in organic reactions are, as a rule, weak bases. In laboratory organic reactions, leaving groups are often halides or toluenesulfonates (section 8.4), both of which are weak bases. In biological organic reactions, phosphates are very common leaving groups. These could be inorganic phosphate, inorganic pyrophosphate, or organic monophosphates, all of which are weakly basic, especially when coordinated to metal cations such as \(Mg^{+2}\) in the active site of an enzyme. We will see many examples of phosphate leave groups in this and subsequent chapters.

    Bonding in phosphates

    Looking at the location of phosphorus on the periodic table, you might expect it to bond and react in a fashion similar to nitrogen, which is located just above it in the same column. Indeed, phosphines - phosphorus analogs of amines - are commonly used in the organic laboratory.

    9.2: Overview of Phosphate Groups (13)

    However it is in the form of phosphate, rather than phosphine, that phosphorus plays its main role in biology.

    The four oxygen substituents in phosphate groups are arranged about the central phosphorus atom with tetrahedral geometry, however there are a total of five bonds to phosphorus - four s bonds and one delocalized \(\pi \) bond.

    9.2: Overview of Phosphate Groups (14)

    Phosphorus can break the 'octet rule' because it is on the third row of the periodic table, and thus has \(d\) orbitals available for bonding. The minus 3 charge on a fully deprotonated phosphate ion is spread evenly over the four oxygen atoms, and each phosphorus-oxygen bond can be considered to have 25% double bond character: in other words, the bond order is 1.25.

    Recall from section 2.1 the hybrid bonding picture for the tetrahedral nitrogen in an amine group: a single \(2s\) and three \(2p\) orbitals combine to form four \(sp^3\) hybrid orbitals, three of which form s bonds and one of which holds a lone pair of electrons.

    9.2: Overview of Phosphate Groups (15)

    In the hybrid orbital picture for phosphate ion, a single \(3s\) and three \(3p\) orbitals also combine to form four \(sp^3\) hybrid orbitals with tetrahedral geometry. In contrast to an amine, however, four of the five valance electrons on phosphorus occupy \(sp^3\) orbitals, and the fifth occupies an unhybridized \(3d\) orbital.

    9.2: Overview of Phosphate Groups (16)

    This orbital arrangement allows for four s bonds with tetrahedral geometry in addition to a fifth, delocalized \(p\) bond formed by \(p\) overlap between the half-filled \(3d\) orbital on phosphorus and \(2p\) orbitals on the oxygen atoms.

    In phosphate esters, diesters, and anhydrides the π bonding is delocalized primarily over the non-bridging bonds, while the bridging bonds have mainly single-bond character. In a phosphate diester, for example, the two non-bridging oxygens share a -1 charge, as illustrated by the two major resonance contributors below. The bonding order for the bridging \(P-O\) bonds in a phosphate diester group is about 1, and for the non-bridging \(P-O\) bonds about 1.5. In the resonance contributors in which the bridging oxygens are shown as double bonds (to the right in the figure below), there is an additional separation of charge - thus these contributors are minor and make a relatively unimportant contribution to the overall bonding picture.

    9.2: Overview of Phosphate Groups (17)

    Exercise 9.2.4

    Draw all of the resonance structures showing the delocalization of charge on a (fully deprotonated) organic monophosphate. If a 'bond order' of 1.0 is a single bond, and a bond order of 2.0 is a double bond, what is the approximate bond order of bridging and non-bridging \(P-O\) bonds?

    Throughout this book, phosphate groups will often be drawn without attempting to show tetrahedral geometry, and π bonds and negative charges will usually be shown localized to a single oxygen. This is done for the sake of simplification - however it is important always to remember that the phosphate group is really tetrahedral, the negative charges are delocalized over the non-bridging oxygens, and that there is some degree of protonation at physiological \(pH\) (with the exception of the phosphate diester group).

    9.2: Overview of Phosphate Groups (2024)
    Top Articles
    US Olympic basketball team is eager to find balance between being players and being fans
    My brother made me play ‘naughty exercises’ - I didn’t realise it was abuse
    Woodward Avenue (M-1) - Automotive Heritage Trail - National Scenic Byway Foundation
    Swimgs Yuzzle Wuzzle Yups Wits Sadie Plant Tune 3 Tabs Winnie The Pooh Halloween Bob The Builder Christmas Autumns Cow Dog Pig Tim Cook’s Birthday Buff Work It Out Wombats Pineview Playtime Chronicles Day Of The Dead The Alpha Baa Baa Twinkle
    What Are Romance Scams and How to Avoid Them
    Sound Of Freedom Showtimes Near Governor's Crossing Stadium 14
    Grange Display Calculator
    Flights to Miami (MIA)
    Stolen Touches Neva Altaj Read Online Free
    Optum Medicare Support
    Craigslist Jobs Phoenix
    2016 Hyundai Sonata Price, Value, Depreciation & Reviews | Kelley Blue Book
    Sand Castle Parents Guide
    iLuv Aud Click: Tragbarer Wi-Fi-Lautsprecher für Amazons Alexa - Portable Echo Alternative
    Cashtapp Atm Near Me
    Xxn Abbreviation List 2023
    Rondom Ajax: ME grijpt in tijdens protest Ajax-fans bij hoofdbureau politie
    Effingham Bookings Florence Sc
    Long Island Jobs Craigslist
    Allentown Craigslist Heavy Equipment
    Kaitlyn Katsaros Forum
    Pirates Of The Caribbean 1 123Movies
    Target Minute Clinic Hours
    Restored Republic June 16 2023
    Xxn Abbreviation List 2017 Pdf
    R/Airforcerecruits
    Cowboy Pozisyon
    Pacman Video Guatemala
    1636 Pokemon Fire Red U Squirrels Download
    Craigslist Efficiency For Rent Hialeah
    Riverstock Apartments Photos
    Our 10 Best Selfcleaningcatlitterbox in the US - September 2024
    Askhistorians Book List
    Vadoc Gtlvisitme App
    Evil Dead Rise Showtimes Near Regal Sawgrass & Imax
    Tributes flow for Soundgarden singer Chris Cornell as cause of death revealed
    Moxfield Deck Builder
    Panchitos Harlingen Tx
    3302577704
    Philadelphia Inquirer Obituaries This Week
    Publictributes
    Hireright Applicant Center Login
    Tattoo Shops In Ocean City Nj
    Pathfinder Wrath Of The Righteous Tiefling Traitor
    Silicone Spray Advance Auto
    Comanche Or Crow Crossword Clue
    The Average Amount of Calories in a Poke Bowl | Grubby's Poke
    Upcoming Live Online Auctions - Online Hunting Auctions
    Okta Hendrick Login
    Home | General Store and Gas Station | Cressman's General Store | California
    Secondary Math 2 Module 3 Answers
    Lorcin 380 10 Round Clip
    Latest Posts
    Article information

    Author: Dong Thiel

    Last Updated:

    Views: 6237

    Rating: 4.9 / 5 (59 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Dong Thiel

    Birthday: 2001-07-14

    Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

    Phone: +3512198379449

    Job: Design Planner

    Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

    Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.